首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2747篇
  免费   204篇
  国内免费   1篇
  2023年   24篇
  2022年   16篇
  2021年   60篇
  2020年   56篇
  2019年   74篇
  2018年   113篇
  2017年   90篇
  2016年   117篇
  2015年   142篇
  2014年   140篇
  2013年   193篇
  2012年   228篇
  2011年   218篇
  2010年   148篇
  2009年   103篇
  2008年   153篇
  2007年   156篇
  2006年   157篇
  2005年   116篇
  2004年   100篇
  2003年   99篇
  2002年   82篇
  2001年   50篇
  2000年   19篇
  1999年   20篇
  1998年   16篇
  1997年   11篇
  1996年   12篇
  1995年   13篇
  1994年   17篇
  1993年   12篇
  1992年   7篇
  1991年   13篇
  1990年   9篇
  1989年   11篇
  1988年   15篇
  1986年   7篇
  1984年   8篇
  1983年   8篇
  1982年   6篇
  1981年   7篇
  1979年   9篇
  1976年   6篇
  1975年   8篇
  1974年   6篇
  1972年   6篇
  1971年   8篇
  1970年   6篇
  1969年   6篇
  1968年   6篇
排序方式: 共有2952条查询结果,搜索用时 15 毫秒
61.
62.
63.
64.
The effect of secondary structure on DNA duplex formation is poorly understood. Using oxDNA, a nucleotide level coarse-grained model of DNA, we study how hairpins influence the rate and reaction pathways of DNA hybridzation. We compare to experimental systems studied by Gao et al. (1) and find that 3-base pair hairpins reduce the hybridization rate by a factor of 2, and 4-base pair hairpins by a factor of 10, compared to DNA with limited secondary structure, which is in good agreement with experiments. By contrast, melting rates are accelerated by factors of ∼100 and ∼2000. This surprisingly large speed-up occurs because hairpins form during the melting process, and significantly lower the free energy barrier for dissociation. These results should assist experimentalists in designing sequences to be used in DNA nanotechnology, by putting limits on the suppression of hybridization reaction rates through the use of hairpins and offering the possibility of deliberately increasing dissociation rates by incorporating hairpins into single strands.  相似文献   
65.
Terrestrial invasive plants are a global problem and are becoming ubiquitous components of most ecosystems. They are implicated in altering disturbance regimes, reducing biodiversity, and changing ecosystem function, sometimes in profound and irreversible ways. However, the ecological impacts of most invasive plants have not been studied experimentally, and most research to date focuses on few types of impacts, which can vary greatly among studies. Thus, our knowledge of existing ecological impacts ascribed to invasive plants is surprisingly limited in both breadth and depth. Our aim was to propose a standard methodology for quantifying baseline ecological impact that, in theory, is scalable to any terrestrial plant invader (e.g., annual grasses to trees) and any invaded system (e.g., grassland to forest). The Global Invader Impact Network (GIIN) is a coordinated distributed experiment composed of an observational and manipulative methodology. The protocol consists of a series of plots located in (1) an invaded area; (2) an adjacent removal treatment within the invaded area; and (3) a spatially separate uninvaded area thought to be similar to pre-invasion conditions of the invaded area. A standardized and inexpensive suite of community, soil, and ecosystem metrics are collected allowing broad comparisons among measurements, populations, and species. The method allows for one-time comparisons and for long-term monitoring enabling one to derive information about change due to invasion over time. Invader removal plots will also allow for quantification of legacy effects and their return rates, which will be monitored for several years. GIIN uses a nested hierarchical scale approach encompassing multiple sites, regions, and continents. Currently, GIIN has network members in six countries, with new members encouraged. To date, study species include representatives of annual and perennial grasses; annual and perennial forbs; shrubs; and trees. The goal of the GIIN framework is to create a standard yet flexible platform for understanding the ecological impacts of invasive plants, allowing both individual and synthetic analyses across a range of taxa and ecosystems. If broadly adopted, this standard approach will offer unique insight into the ecological impacts of invasive plants at local, regional, and global scales.  相似文献   
66.
Poor outcome of extramedullary disease in multiple myeloma patients and lack of outcome predictors prompt continued search for new markers of the disease. In this report, we show circulating microRNA distinguishing multiple myeloma patients with extramedullary disease from myeloma patients without such manifestation and from healthy donors. MicroRNA-130a was identified by TaqMan Low Density Arrays and verified by quantitative PCR on 144 serum samples (59 multiple myeloma, 55 myeloma with extramedullary disease, 30 healthy donors) in test and validation cohorts as being down-regulated in myeloma patients with extramedullary disease. Circulating microRNA-130a distinguished myeloma patients with extramedullary disease from healthy donors with specificity of 90.0% and sensitivity of 77.1%, patients with extramedullary disease from newly diagnosed multiple myeloma patients with specificity of 77.1% and sensitivity of 34.3% in the test cohort and with specificity of 91.7% and sensitivity of 30.0% in the validation cohort of patients. Circulating microRNA-130a in patients with extramedullary myeloma was associated with bone marrow plasma cells infiltration. Further, microRNA-130a was decreased in bone marrow plasma cells obtained from patients with extramedullary myeloma in comparison to bone marrow plasma cells of myeloma patients without such manifestation, but it was increased in tumor site plasma cells of patients with extramedullary disease compared to bone marrow plasma cells of such patients (p<0.0001). Together, our data suggest connection between lower level of microRNA-130a and extramedullary disease and prompt further work to evaluate this miRNA as a marker of extramedullary disease in multiple myeloma.  相似文献   
67.
The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55–83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57%) of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%). Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes.  相似文献   
68.
69.
The effect of CCC and GA3 on the growth and development of spring wheat (Triticum aestivum L.) cultivated under predominantly red (500–700 nm) or blue (400–500 nm) light was investigated. Red light enhanced the development of wheat during the exponential phase of growth. This effect presumably implicated the promotion of gibberellin synthesis under red light. The strong inhibitory action of CCC under red light (the inhibition was lower under blue light) might be interpreted in a similar way. The growth became more intensive under blue light after caring and was accompanied by increased susceptibility to giberellic acid treatment.  相似文献   
70.
Aim Long‐distance dispersal is important for plant population dynamics at larger spatial scales, but our understanding of this phenomenon is mostly based on computer modelling rather than field data. This paper, by combining field data and a simulation model, quantifies the fraction of the seed of the alien species Heracleum mantegazzianum that needs to disperse over a long distance for successful invasion. Location Central Europe, Czech Republic. Methods To assess the role of random dispersal in long‐term population dynamics of the studied species, we combined longitudinal data covering 50 years of the invasion of this plant from its very start, inferred from a series of aerial photographs of 60‐ha plots, with data on population dynamics at a fine scale of 10‐m2 plots. Results A simulation model based on field data indicates that the fraction of seed that is dispersed from source plants not described by the short‐distance dispersal kernel ranges from 0.1 to 7.5% of the total seed set. The fraction of long‐distance dispersed seed that provides the best prediction of the observed spread was significantly negatively correlated with the percentage of habitats suitable for invasion. Main conclusions Our results indicate that the fraction of seeds that needed to be dispersed over long distances to account for the observed invasion dynamics decreased with increasing proportion of invasible habitats, indicating that the spatial pattern of propagule pressure differs in landscapes prone to invasion. Long‐distance dispersal is an important component of the population dynamics of an invasive species even at relatively small scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号